A uniqueness theorem for nonlinear heat conduction in chemically reacting media

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

A Nonlinear Optimization Problem in Heat Conduction

In this paper we study the existence and geometric properties of an optimal configuration to a nonlinear optimization problem in heat conduction. The quantity to be minimized is R ∂D Γ(x, uμ)dσ, where D is a fixed domain. A nonconstant temperature distribution is prescribed on ∂D and a volume constraint on the set where the temperature is positive is imposed. Among other regularity properties o...

متن کامل

A Uniqueness Theorem for a Classical Nonlinear Shallow Shell Model

The main goal of this paper is to establish the uniqueness of solutions of finite energy for a classical dynamic nonlinear thin shallow shell model with clamped boundary conditions. The static representation of the model is an extension of a Koiler shallow shell model. Until now, this has been an open problem in the literature. The primary difficulty is due to a lack of regularity in the nonlin...

متن کامل

Fluctuation theorem in quantum heat conduction.

We consider steady-state heat conduction across a quantum harmonic chain connected to reservoirs modeled by infinite collection of oscillators. The heat, Q, flowing across the oscillator in a time interval tau is a stochastic variable and we study the probability distribution function P(Q). We compute the exact generating function of Q at large tau and the large deviation function. The generati...

متن کامل

Heat conduction in 2d nonlinear lattices

The divergence of the heat conductivity in the thermodynamic limit is investigated in 2d-lattice models of anharmonic solids with nearest-neighbour interaction from single-well potentials. Two different numerical approaches based on nonequilibrium and equilibrium simulations provide consistent indications in favour of a logarithmic divergence in ”ergodic”, i.e. highly chaotic, dynamical regimes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1976

ISSN: 0022-247X

DOI: 10.1016/0022-247x(76)90151-7